## **Standard Deviation & Normal Distribution Notes**



Last new lesson of Algebra 2!

Yahoo!

## **Review:** WHAT IS THE *MEAN* OF A SET OF DATA?



**Standard Deviation** is a statistical measure that shows how much data values deviate from the mean of a data set.

AKA – they tell us how \_\_\_\_\_ the data is!

For example, the <u>more spread out</u> the data is, the <u>larger</u> the standard deviation!

The formula for the **standard deviation** is:

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

BUT...GOOD NEWS... the calculator will tell us the standard deviation if we enter in the data!!

| <b>Example 1:</b> Below are the test scores of | of three students (Sally, Sue, Sandy).  |
|------------------------------------------------|-----------------------------------------|
| Sally's scores: 70, 70, 70, 70, 70, 70         | M=70                                    |
| Sue's scores: 75, 65, 73, 67, 71, 69           | =¬*All three sets of data have the SAME |
| Sandy's scores: 90, 50, 82, 58, 79, 61         | M= 70 MEAN (believe it or not)!         |

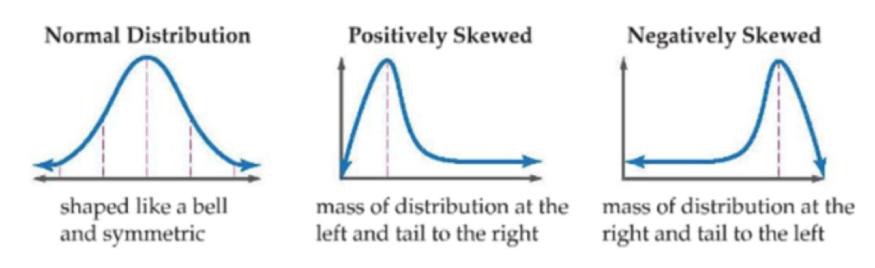
**Predict: a.** Which of the students is going to have the highest standard deviation? Why?

**b.** What will the standard deviation for Sally's scores be? Why do you think so?

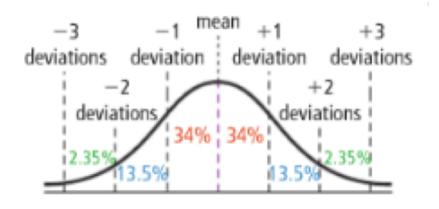
Sally's  $\sigma$ 

Now, calculate each  $\sigma$  by using your calculator:

Step 1: Stat 
$$\rightarrow$$
 Edit  $\rightarrow$  Enter data into L<sub>1</sub>  
Step 2: Stat  $\rightarrow$  Calc  $\rightarrow$  1-Var Stats  $\rightarrow$  Enter


Sue's  $\sigma$ 

Sue's  $\sigma$ 

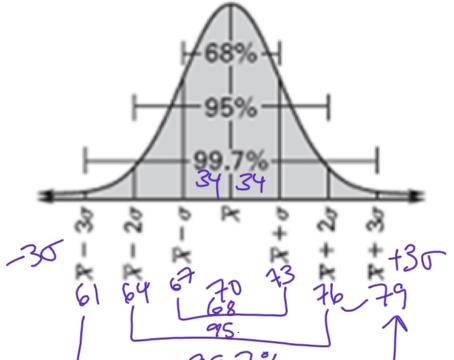

14.3

(mean: 
$$\bar{x}$$
 standard deviation:  $\sigma$ )

## THE NORMAL DISTRIBUTION



A normal distribution has data that vary randomly from the mean. The graph of a normal distribution is a normal curve.

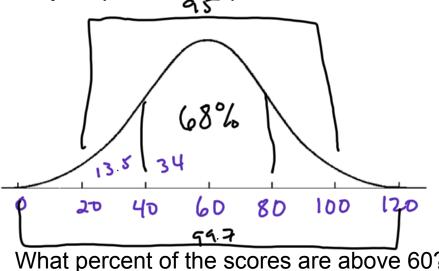



In a normal distribution,

- 68% of data fall within one standard deviation of the mean
- 95% of data fall within two standard deviations of the mean
- 99.7% of data fall within three standard deviations of the mean

A normal distribution has a symmetric bell shape, centered at the mean.

Many common statistics such as human height, weight or blood pressure have a normal distribution about the mean.



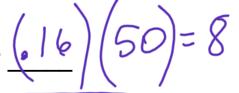

**For example:** Suppose the mean height for 20-year-old men is 70 inches and the standard deviation is 3 inches. This means that 68% of 20-year-old men have a height between 67 and 73 inches inclusive. Fill in the blanks below:

95% of 20-year-old men have a height between  $\frac{64}{95}$  and  $\frac{76}{100}$  inches inclusive.

99.7 % of 20-year-old men have a height between 61 and 79 inches inclusive.

**Example 4)** Given the quiz scores 30 50 60 70 90. Draw a normal curve.



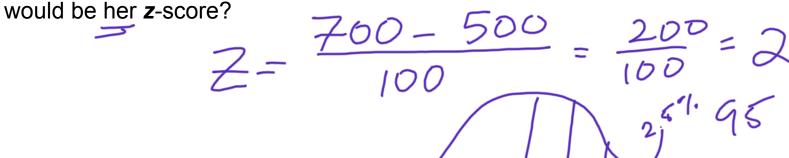

What percent of the scores are above 60?

50 student

What percent of the scores are below 40?  $\frac{16}{6}$ 

What percent of the scores are between 40 and 80?

If 50 students took this quiz how many scored less than 40?




## **Z-Scores (standard deviations from mean)**

A z-score reflects how many standard deviations above or below the mean a raw score is. The z-score is positive if the data value lies above the mean and negative if the data value lies below the mean.

Where x represents an element of the data set, the mean is represented by  $\mu$  and standard deviation by  $\sigma$ .

**Example 5)** Suppose SAT scores among college students are normally distributed with a mean of 500 and a standard deviation of 100. If a student scores a 700, what



Her **z**-score would be which means her score is standard deviations the mean.

**Example 6)** In Harold's math class, a recent test has a mean of 70 and a standard deviation of 8. In Harold's English class, a recent test has a mean of 74 and a standard deviation of 16. If Harold earned a score of 78 on both tests, then in which subject is his performance better?

Find the z-score for each test:

Math 
$$X = 78$$
 $M = 70$ 
 $T = 8$ 
 $Z = \frac{78 - 70}{8}$ 

$$\mu = 74$$
 $\mu = 74$ 
 $\mu = 74$ 

The  $\underline{\text{Morth}}$  score would have the highest standing since it is  $\underline{\underline{\text{Above}}}$  standard deviation(s)  $\underline{\text{Above}}$  the mean, while the  $\underline{\text{Engl}(sh)}$  score is only  $\underline{\text{Above}}$  standard deviation(s)  $\underline{\text{Above}}$  the mean.