3.6 Derivatives of Inverse Functions

Derivative of an Inverse Function
Let $f$ be a function that is differentiable on an interval $I$. If $f$ has an inverse function $g$, then $g$ is differentiable at any $x$ for which $f^{\prime}(g(x)) \neq 0$. Moreover,

$$
\begin{aligned}
& g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} \quad \begin{array}{c}
f^{\prime}(g(x)) \neq 0 \\
\text { see below for poof in red. }
\end{array} \\
& \text { or }\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

Deriving the formula:
If $f$ and $g$ are inverse functions and $x$ is in the domain of $g$, then:

$$
f(g(x))=x \quad \begin{aligned}
& \text { (Property of Inverse } \\
& \text { Functions) }
\end{aligned}
$$

Now, take the derivative w/ respect tox using Implicit Differentiation:

$$
f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \quad \begin{gathered}
\text { * left side } \\
\text { Uses } \\
\text { Chain role }
\end{gathered}
$$

Now, solve for $g^{\prime}(x)$ :

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

Example 1) Let $f(x)=\frac{1}{4} x^{3}+x-1$
a. What is the value of $f^{-1}(x)$ when $x=3$ ?



Since $f(2)=3$, then $f^{-1}(3)=2$
b. Hence, what is the value of $\left(f^{-1}\right)^{\prime}(x)$ when $x=3$ ?

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(x) & =\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \\
\left(f^{-1}\right)^{\prime}(3) & =\frac{1}{f^{\prime}\left(f^{-1}(3)\right)} \\
& =\frac{1}{f^{\prime}(2)}
\end{aligned} \quad \begin{array}{r}
f^{\prime}(x)=\frac{3}{4} x^{2}+1 \\
f^{\prime}(2)=\frac{3}{4}(2)^{2}+1 \\
\\
=4
\end{array}
$$

Multiple Choice: AP Exam question
Example 2) Let $g$ be the function defined by $g(x)=x^{3}+x$. If $f(x)=g^{-1}(x)$ and $f(2)=1$, what is the value of $f^{\prime}(2)$ ?

$$
g^{-1}(2)=1
$$

[A] $\frac{1}{13}$
[B] $\frac{1}{4}$
[C] $\frac{7}{4}$
[D] 4
[E] 13

$$
\begin{aligned}
\left(g^{-1}\right)^{\prime}(x) & =\frac{1}{g^{\prime}\left(g^{-1}(x)\right)} \\
\left(g^{-1}\right)^{\prime}(2) & =\frac{1}{g^{\prime}\left(g^{-1}(2)\right)} \\
& =\frac{1}{g^{\prime}(1)} \Rightarrow g^{\prime}(x)=3 x^{2}+1 \\
& \therefore\left(g^{\prime}(1)=3(1)^{2}+1\right. \\
& =4 \\
& \text { i.e, } f^{\prime}(2)=\frac{1}{4}
\end{aligned}
$$

## Derivatives of Inverse Trig Functions

$$
\begin{aligned}
& y=\arcsin x \\
& y=\arccos x \\
& y=\arctan x \\
& y=\operatorname{arccot} x \\
& y=\operatorname{arcsec} x \\
& y=\operatorname{arccsc} x
\end{aligned}
$$

These can be written as $\mathrm{y}=\sin ^{-1} \mathrm{x}$ rather than $\mathrm{y}=\arcsin \mathrm{x}$

## $\sin ^{-1} x$ does NOT mean $\quad 1$ $\sin x$

Example 3: Evaluate the derivative of $\sin y=x$

$$
y=\sin ^{-1} x
$$

$$
\begin{aligned}
& \sin y=x \\
& \cos y \frac{d y}{d x}=1 \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{1}{\cos y} \\
& \frac{\text { Recall }: \cos ^{2} y+\sin ^{2} y=1}{1} \\
\rightarrow \frac{d y}{d x} & =\frac{1}{\sqrt{1-\sin ^{2} y}}
\end{aligned} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}} \rightarrow \begin{array}{l}
\text { since } \\
\text { sin } y=x \\
\text { in problem }
\end{array} \\
& \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}} \Rightarrow \text { derivative }} \begin{array}{l}
\text { of } y=\arcsin x
\end{array}
\end{aligned}
$$

Example 4: Evaluate the derivative of $\cos y=x$

$$
\begin{aligned}
& y=\cos ^{-1} x \\
& \cos y=x \\
& -\sin y \frac{d y}{d x}=1 \\
& \int \frac{d y}{d x}=\frac{-1}{\sin y} \\
& \text { Recall: } \sin ^{2} y+\cos ^{2} y=1 \\
& \rightarrow \frac{\partial y}{\partial x}=\frac{-1}{\sqrt{1-\cos ^{2} y}} \longleftarrow \\
& \frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \rightarrow \text { since } \\
& \cos y=x \\
& \text { from problem } \\
& \frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}} \Rightarrow \begin{array}{c}
\text { derivative of } \\
y=\arccos x
\end{array}
\end{aligned}
$$

* MUST MEMORIZE!

| $\frac{d}{d x} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$ | $\frac{d}{d x} \tan ^{-1} u=\frac{1}{1+u^{2}} \frac{d u}{d x}$ | $\frac{d}{d x} \sec ^{-1} u=\frac{1}{\|u\| \sqrt{u^{2}-1}} \frac{d u}{d x}$ |
| :--- | :--- | :--- |
| $\frac{d}{d x} \cos ^{-1} u=-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$ | $\frac{d}{d x} \cot ^{-1} u=-\frac{1}{1+u^{2}} \frac{d u}{d x}$ | $\frac{d}{d x} \csc ^{-1} u=-\frac{1}{\|u\| \sqrt{u^{2}-1}} \frac{d u}{d x}$ |

These formulas are on page 177 in your books.

Example 5: Find the derivative of:

$$
\left[\begin{array}{l}
y=\sin ^{-1}(1-t) \Rightarrow \begin{array}{r}
\text { remember, this is the } \\
\\
\text { same as } y=\arcsin (1-t) \\
\frac{\partial}{\partial x}\left[\sin ^{-1} u\right]=\frac{1}{\sqrt{1-u^{2}}} \cdot u^{\prime}
\end{array} \\
\rightarrow y^{\prime}=\frac{1}{\sqrt{1-(1-t)^{2}}} \cdot(-1)
\end{array}\right.
$$

Example 6: Find the derivative of:

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
\frac{\frac{\text { Recall }}{}}{\frac{d}{d x}\left[\sec ^{-1}(5 s)\right.}: \\
y^{\prime}=\frac{1}{|5 s| \sqrt{(5 s)^{2}-1}} \cdot 5 \\
y^{\prime}=\frac{5}{|5 s| \sqrt{25 u^{2}-1}} \cdot u^{\prime} \\
\end{array}\right.}
\end{array}\right.
$$

Example 7: Find the derivative of:

$$
\left(\begin{array}{l}
y=\arctan (x / 2) \\
y^{\prime}=\frac{1}{1+\left(\frac{x}{2}\right)^{2}} \cdot\left(\frac{1}{2}\right) \\
\left.y^{\prime}=\frac{1}{1+\frac{x^{2}}{4}} \cdot\left(\frac{1}{2}\right) \int \tan ^{-1} u\right]=\frac{1}{1+u^{2}} \cdot u^{\prime} \\
y^{\prime}=\frac{1}{2+\frac{x^{2}}{2}} \\
y^{\prime}=\frac{1}{\frac{4+x^{2}}{2}} \cdot \frac{2}{4+x^{2}}
\end{array}\right.
$$

Example 8: Find the derivative of:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\operatorname{Recall}:}{y=}: \frac{\partial}{d x}\left[\cos ^{-1} u\right]=-\frac{1}{\sqrt{1-u^{2}}} \cdot u^{\prime} \\
\rightarrow y^{\prime}=-\frac{1}{\sqrt{1-\left(\frac{1}{x}\right)^{2}}} \cdot\left(-\frac{1}{x^{2}}\right) \quad\left\{\begin{array}{l}
u=\frac{1}{x} \\
u=x^{-1} \\
u^{\prime}=-x^{-2} \\
u^{\prime}=-\frac{1}{x^{2}}
\end{array}\right. \\
x^{\prime} \sqrt{1-\frac{1}{x^{2}}}
\end{array}\right.
\end{aligned}
$$

Example 9: Find the equation of the tangent line to the graph of

$$
\begin{aligned}
& \int^{y=\tan ^{-1} x \text { at } x=-2} \quad\left\{\begin{array}{l}
\text { Recall: } \frac{\partial}{\partial x}\left[\tan ^{-1} u\right]=\frac{1}{1+u^{2}} \cdot u^{\prime}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{1+x^{2}} \\
& y^{\prime}(-2)=\frac{1}{1+(-2)^{2}} \\
& =\frac{1}{1+4} \\
& \text { Use calculator } \\
& \text { in radian mode } \\
& y=-1.107 \\
& \text { point: }(-2,-1.107) \\
& m_{\tan @}=\frac{1}{5}
\end{aligned}
$$

Tangent line
@ $x=-2$ is $y+1.107=\frac{1}{5}(x+2)$

Find the derivative of $h(x)=x^{2} \underbrace{\arctan (5 x)}_{g}$

$$
\begin{aligned}
& f=x^{2} \\
& f^{\prime}=2 x \\
& g=\arctan (5 x) \quad \text { Recall: } \frac{\partial}{\partial x}\left[\tan ^{-1} u\right]=\frac{1}{1+u^{2}} \cdot u^{\prime} \\
& g^{\prime}=\frac{1}{1+(5 x)^{2}} \cdot 5 \\
& g^{\prime}=\frac{5}{1+25 x^{2}} \\
& h^{\prime}(x)=f^{\prime} g+g^{\prime} f \\
& h^{\prime}(x)=(2 x) \arctan (5 x)+\left(\frac{5}{1+25 x^{2}}\right)\left(x^{2}\right) \\
& h^{\prime}(x)=2 x \arctan (5 x)+\frac{5 x^{2}}{1+25 x^{2}}
\end{aligned}
$$

Example 11: page 180 \#33
Find the derivative of $h(t)=\sin (\arccos (t))$

$$
\text { let } \begin{aligned}
& u=\arccos t \quad \frac{\operatorname{Rea} l: \frac{d}{d x}\left[\cos ^{\prime} u\right]=-\frac{1}{\sqrt{1-u^{2}}} \cdot u^{\prime}}{v} \\
&=\sin u \\
& u^{\prime}=-\frac{1}{\sqrt{1-t^{2}}} \cdot 1 \\
& v^{\prime}=\cos u \\
& h^{\prime}(t)=u^{\prime} v^{\prime} \\
&=-\frac{1}{\sqrt{1-t^{2}}} \cdot \cos u \\
&=-\frac{1}{\sqrt{1-t^{2}}} \cdot \cos (\arg \cos t) \\
& h^{\prime}(t)=-\frac{t}{\sqrt{1-t^{2}}}
\end{aligned}
$$

