Unit 1, Lesson 10

Postulates and Theorems relating to points, lines, and planes

"The cowboys have a way of trussing up a steer or a pugnacious bronco which fixes the brute so that it can neither move nor think. This is the hog-tie, and it is what Euclid did to Geometry"

-Eric Temple Bell

Recall we have accepted, without proof, four basic assumptions:

The Ruler Postulate
The Protractor Postulate

The Segment Addition Postulate
The Angle Addition Postulate

Postulate \#5

a) A line contains at least two points.

b) A plane contains at least three points not all in one line

c) Space contains at least four points not all in one plane

Postulate \#6

Through any two points there is exactly one line.

Postulate \#7

a) Through any three points there is at least one plane

b) Through any three noncollinear points there is exactly one plane.

Postulate \#8

If two points are in a plane, then the line that contains the points is in that plane.

Postulate \#9

If two planes intersect, then their intersection is a line.

Theorems

-statements that can be shown true (proved) by assumptions, definitions, and previous knowledge that has been shown true.
-There are many different ways to prove statements.

Theorem 1-1

If two lines intersect, then they intersect at exactly one point.

How can we prove this is true?????

Sometimes we need to use the contrapositive to prove a statement.
(Remember the contrapositive and original have the same truth value.)

If it is not true that two lines intersect in exactly one point, then they do not intersect.

$$
2+\text { or } 0
$$

How can we use this?

The no intersection case keeps the statement true.

What postulate or definition does the drawing with two intersections contradict?

Now since we have a true contrapositive, the original statement must be true.

Theorem 1-2
Through a line and a point not in the line there is exactly one plane.

A line has at least 2 pts so all pis Bare C to l.
Through 3 noncollineor pts there se exactly one plane so draw plane ABC and since $B+C$ are on the so is ℓ.

How do we get three points so we can make a plane?

Why can we say there is a plane now???

Theorem 1-3
Prove this. (Hint you do not need the contrapositive.)
If two lines intersect, then exactly one plane contains them.
 2 lines intersect in exactly ene p+ so label the intersect firn of 4 car m os A_{9} and a line has at least 2 pts so place B on l cal C on M.
Through 3 non collinar pts there is exactly ane plane so
draw ploneA1B draw ploneAtBC .o.

Closure:

What did you find interesting/new today? How would you explain proof to a friend?

